Instructions:¶
Submit your work in the form of a .m file. Please name your file (first initial)(Last name)L03.m. For example, my file would be named jMearsL03.m
. Start your file off with the command clear
and please clearly label each problem with comments in your file.
Exercises:¶
- Create the following matrices in MATLAB©. It is convention to assume that unlisted elements in a matrix are 0. You may use whatever "intermediate" matrices you'd like, but DO NOT JUST MANUALLY ENTER EACH ELEMENT of the matrix.
$$
A1 = \left(\begin{matrix} 10 & & \\ & 10 & \\ & & 10 \end{matrix}\right), \quad\quad B1 = \left(\begin{matrix} 1 & 4\\ 2 & 5 \\ 3 & 6\end{matrix}\right), \quad\quad C1 = \left(\begin{matrix}1 & 2 & 3 & 4 & 12 & 13 & 14\end{matrix}\right),\quad\quad D1 = \left(\begin{matrix} 1 & 2 & 2\\ 2 & 1 & 2 \\ 2 & 2 & 1\end{matrix}\right),\quad\quad E1 = \left(\begin{matrix} 1 & 4\\ 2 & 5 \\ 3 & 6 \\1 & \\ & 1 \end{matrix}\right).
$$
- Use the
diag
command to create the following matrices.
$$
A2 = \left(\begin{matrix} 1 & & \\ & 1 & \\ & & 1\end{matrix}\right),\quad\quad B2 = \left(\begin{matrix} 10 & & \\ & 12 & \\ & & 14\end{matrix}\right),\quad\quad C2 = \left(\begin{matrix} 9 & 1 & 1 \\ 1 & 10 & 1 \\ 1 & 1 & 11 \end{matrix}\right).
$$
- Use the
diag
command's ability to assign vectors to so-called "off-diagonals" to create the following matrices.
$$
A3 = \left(\begin{matrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 3\end{matrix}\right),\quad\quad B3 = \left(\begin{matrix} -2 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & -2 & 1 & \cdots & \cdots & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 &0 & 1 & -2 & 1 \\ 0 & 0 & \cdots & \cdots & 1 & -2 \end{matrix}\right)
$$